logo

johzu

About

Thermal Physics Formulas


Remember that: \( \vec{a} = \mathbf{a} \) and \(\Delta a = a_{final} - a_{initial} = a_{f} - a_{i} = a_{2} - a_{1} \). The \(\propto\) symbol is read as "is proportional to".

Symbols

name symbol
area $$A$$
attraction between particles $$a$$
volume available for one mole of particles $$b$$
heat capacity $$C$$
specific heat capacity $$C_{e},\ c$$
Helmholtz free energy $$F$$
Gibbs free energy $$G$$
enthalpy $$H$$
reaction enthalpy $$\Delta H_{r}$$
reduced Planck constant $$\hbar = 1.054572\ J \cdot s$$
moment of inertia $$I$$
total angular momentum operator $$J$$
angular momentum quantum number $$\hat{J}$$
equilibrium constant $$K$$
Boltzmann constant $$k = k_{B} = 1.380649 \times 10^{-23} \frac{J}{K}$$
length $$L$$
mass $$m$$
amount of substance, mode of the system or degree of freedom $$N,\ n$$
quantum concentration $$n_{Q}$$
pressure $$P,\ p$$
heat $$Q$$
molar gas constant $$R = 8.314462 \frac{J}{K \cdot mol}$$
entropy $$S$$
Boltzmann entropy $$S_{B}$$
temperature $$T$$
internal energy $$U$$
volume $$V$$
molar volume $$V_{m},\ v$$
work, multiplicity or statistical weight $$W$$
partition function $$Z$$
thermal dilatation coefficient, quantity of the states of the system $$\alpha$$
volumetric expansion coefficient $$\beta$$
surface expansion coefficient $$\gamma$$
change in the value of a variable $$\Delta$$
total molar Gibbs function change in a reaction $$\Delta_{r}G$$
isothermal compressibility $$\kappa$$
thermal wavelength $$\lambda_{th}$$
chemical potential $$\mu$$
grand potential $$\Phi,\ \Phi_{G}$$
Stefan-Boltzmann constant $$\sigma = 5.670374 \times 10^{-8} \frac{\textrm{W}}{\textrm{m}^{2} \cdot \textrm{K}^{4}}$$
multiplicity or statistical weight, grand potential $$\Omega$$
thermodynamic quantity in the standard state $$^{\sout{\circ}}$$

Thermodynamics

Thermology

name equation
thermal dilatation coefficient $$\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)$$
linear dilatation $$\Delta L = \alpha L_{0} \Delta T$$
surface expansion coefficient $$\gamma = \frac{1}{A} \frac{dA}{dT}$$
surface expansion coefficient $$\gamma = 2 \alpha$$
surface dilatation $$\Delta A = \gamma A_{i} \Delta T$$
final area $$ A_{f} = A_{i} \left[ 1 + 2 \alpha \left( T_{f} - T_{i} \right) \right]$$
volumetric expansion coefficient $$\beta = \frac{1}{V} \frac{dV}{dT}$$
volumetric expansion coefficient $$\beta = 3 \alpha$$
volumetric dilatation $$\Delta V = \beta V_{i} \Delta T$$
final volume $$V_{f} = V_{i} \left[ 1 + \beta \left( T_{f} - T_{i} \right) \right]$$
isothermal compressibility $$\kappa = -\frac{1}{V}\left( \frac{\partial V}{\partial P} \right)_{T}$$
Stefan-Boltzmann law $$E = \sigma T^{4}$$

Ideal gas

name equation
Boyle's law $$P \propto \frac{1}{V}$$
Charles' law $$V \propto T$$
Gay-Lussac's law $$P \propto T$$
ideal gas equation $$PV = Nk_{B}T$$

Real gas

name equation
Van der Waals equation of state \( b = N_{A} V_{M} \) $$\left( P + a \frac{N^{2}}{V^{2}} \right)\left( V - Nb \right) = NRT$$
Redlich-Kwong equation of state $$P = \frac{NRT}{V-b} - \frac{a}{\sqrt{T} }\frac{N^{2}}{V\left( V - Nb \right)}$$

State functions

name equation
internal energy $$\Delta U = Q + W$$
Van der Waals internal energy $$U_{VW} = U_{ideal} - a\left( \frac{N}{V} \right)^{2} V$$
entropy $$dS = \frac{\delta Q}{T};\ \frac{dS}{dt}\geq 0$$
heat capacity $$C = \frac{dQ}{dT} = \frac{Q}{\Delta T} $$
specific heat capacity $$c = \frac{C}{m} = \frac{Q}{m \Delta T} $$

Thermodynamic potentials

name equation
internal energy $$\Delta U = \int \left( TdS - PdV + \sum_{i} \mu_{i}dN_{i} \right)$$
Helmholtz free energy $$F = U - TS$$
enthalpy $$H = U + PV$$
Gibbs free energy $$\begin{align*}G &= U + PV - TS\\ &= H - TS\end{align*}$$
grand potential $$\Omega = \Phi_{G} = \sum_{i} U - TS - \mu_{i}N_{i}$$

Related formulas

name equation
reaction enthalpy $$\Delta H_{r} = \sum H_{products} - \sum H_{reactants}$$

Statistical mechanics

name equation
Boltzmann entropy $$S = k_{B}\ln\Omega$$
average energy $$\bar{E} = n \times \frac{1}{2}k_{B}T$$
partition function $$Z = \sum_\alpha e^{-\beta E_{\alpha}}$$
Boltzmann factor $$\beta = \frac{1}{k_{B} T}$$
partition function for two-level systems
\(\left(-\Delta/2, \Delta/2\right)\)
$$Z = 2 \cosh \left( \frac{\beta \Delta}{2} \right)$$
partition function for the \(N\)-level system
\( \left(0, \hbar\omega, 2\hbar\omega, \ldots , \left( N-1 \right) \hbar \omega \right) \)
$$Z = \frac{1 - e^{-N\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}$$
partition function for the simple harmonic oscillator
\( E = \left(n + \frac{1}{2} \hbar \omega\right),\ n = 0,1,2, \ldots \)
$$Z = \frac{e^{-\frac{1}{2}\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}$$
partition function for rotational energy levels
\( E_{rotational} = \hat{J}^{2}/2I \), \(\hat{J}^{2} = \hbar^{2} J\left( J + 1 \right)\), \( J = 0,1,2, \ldots \)
$$Z = \sum_{J = 0}^{\infty} \left( 2J + 1 \right) e^{ - \beta \hbar^{2} J\left( J + 1 \right)/ 2 I} $$
ideal gas partition function $$Z = \frac{V}{\lambda_{th}^{3}}$$
thermal wavelength $$\lambda_{th} = \frac{h}{\sqrt{2 \pi m k_{B} T}}$$
quantum concentration $$n_{Q} = \frac{1}{\lambda_{th}^{3}}$$
grand partition function $$\mathcal{Z} = \sum_{i}e^{\beta\left( \mu N_{i} - E_{i} \right)}$$
grand potential $$\begin{split}\Phi_{G} &= -k_{B} T \ln \mathcal{Z} \\ &= U - TS - \mu N \\ &=-PV \end{split}$$
equilibrium constant $$\ln K = -\frac{\Delta_{r} G^{\sout{\circ}}}{RT}$$
temperature dependence of the equilibrium constant $$\frac{\mathrm{d} \ln K}{\mathrm{d}T} = \frac{\Delta_{r}H^{\sout{\circ}}}{RT^{2}}$$

State functions

name function of state statistical mechanical expression
internal energy $$U$$ $$U = -\frac{\mathrm{d} \ln Z}{\mathrm{d} \beta}$$
Helmholtz free energy $$F$$ $$F = - k_{B} T \ln Z$$
entropy $$S = -\left( \frac{\partial F}{\partial T} \right)_{V} = \frac{U - F}{T}$$ $$S = k_{B} \ln Z + k_{B} T \left( \frac{\partial \ln Z}{\partial T} \right)_{V}$$
pressure $$P = -\left( \frac{\partial F}{\partial V} \right)_{T} $$ $$P = k_{B} T \left( \frac{\partial \ln Z}{\partial V} \right)_{T}$$
enthalpy $$H = U + PV$$ $$H = k_{B} T \left[ T \left( \frac{\partial \ln Z}{\partial T} \right)_{V} + V \left( \frac{\partial \ln Z}{\partial V}\right)_{T} \right]$$
Gibbs free energy $$\begin{align*}G &= F + PV \\G &= H - TS\end{align*}$$ $$G = k_{B} T \left[ -\ln Z + V \left( \frac{\partial \ln Z}{\partial V}\right)_{T} \right]$$
heat capacity $$C_{V} = \left( \frac{\partial U}{\partial T} \right)_{V}$$ $$C_{V} = k_{B} T \left[ 2 \left( \frac{\partial \ln Z}{\partial T} \right)_{V} + T \left( \frac{\partial^{2} \ln Z}{\partial T^{2}}\right)_{V} \right]$$