logo

johzu

About

Probability and statistics formula sheet


Symbols

Remember that \( \sum_{i=1}^{i=n} \) or \( \sum_{i=1}^{n} \) is the addition of a sequence of numbers, in this case from \(1\) to \(n\). Like this: \( \sum_{i=m}^{n} a_{i} = a_{m} + a_{m+1} + a_{m+2} + \cdots + a_{n-1} + a_{n}\).

name symbol
class amplitude $$A$$
class mark $$CM$$
event $$E$$
sample size $$N,\ n$$
absolute cumulative frequency $$N_{i}$$
absolute frequency $$n_{i}$$
relative frequency $$f_{i}$$
relative cumulative frequency $$F_{i}$$
mean absolute deviation $$MD$$
probability of an event $$P\left( E \right)$$
probability of the complement of an event $$P\left( E^{\complement} \right)$$
union of probabilities $$P\left( A \cup B \right)$$
intersection of probabilities $$P\left( A \cap B \right)$$
(conditional) probability of \(A\) given \(B\) $$P\left( A \vert B \right)$$
range $$R$$
sample space $$S$$
standard deviation $$s$$
variance $$s^{2}$$
sample elements $$X_{i}$$
average $$\bar{x}$$
median $$\tilde{x}$$
mode $$\hat{x}$$
value $$x_{i}$$
Fisher's moment coefficient of skewness $$\gamma_{1}$$
average $$\mu$$
k-th central moment $$\mu_{k}$$
standard deviation $$\sigma$$
variance $$\sigma^{2}$$
sample space $$\Omega$$
imposible event $$\empty$$

Statistics

name equation
ceiling function $$\left\lceil -1.5 \right\rceil = -1$$ $$\left\lceil 1.5 \right\rceil = 2$$
floor function $$\left\lfloor -1.5 \right\rfloor = -2$$ $$\left\lfloor 1.5 \right\rfloor = 1$$
absolute frequency $$n_{i}$$
average $$\bar{x} = \frac{1}{n} \sum_{i = 1}^{n} x_{i}$$
class mark $$CM = \frac{\mathrm{Upper\ Limit} + \mathrm{Lower\ Limit}}{2}$$
relative frequency $$f_{i} = \frac{n_{i}}{n}$$
absolute cumulative frequency $$N_{i} = \sum_{j\leq i} n_{j}$$
relative cumulative frequency $$F_{i} = \sum_{j \leq i} \frac{n_{j}}{n}$$
median $$\tilde{x} = \begin{cases} x_{(n+1)/2} & n \text{ is odd} \\ \frac{x_{(n/2)} + x_{(n/2)+1}}{2} & n \text{ is even}\end{cases}$$
median (grouped data) $$\tilde{x} = L_{\tilde{x}} + A \left( \frac{\frac{n}{2} - F_{\tilde{x} - 1}}{f_{\tilde{x}}} \right)$$
mode $$\hat{x} = \operatorname{argmax}_{x_{i}} $$
arguments of the maximum $$\begin{split}\operatorname{argmax}_{S} f &:= \underset{x \in S}{\operatorname{argmax}} f\left( x \right) \\ &:= \left\lbrace x \in S | f(s) \leq f(x) \forall s \in S \right\rbrace\end{split}$$
Is defined as there is an \( x \) in set \(S\) such that \(s\) evaluated in \(f\) function is less or equal to \(x\) evaluated in \(f\) function for all \(s\) in set \(S\).
mode (grouped data) $$\hat{x} = L_{\hat{x}} + A \left( \frac{f_{\hat{x}} - f_{\hat{x} - 1}}{\left( f_{\hat{x}} - f_{\hat{x} - 1} \right) + \left( f_{\hat{x}} - f_{\hat{x} + 1} \right)} \right)$$
range $$R = x_{max} - x_{min}$$
variance $$\sigma^{2} = \frac{1}{n-1} \sum_{i = 1}^{n} \left(x_{i} - \bar{x}\right)^{2}$$
variance (less rounding error) $$\sigma^{2} = \frac{1}{n-1} \left\lbrack \sum_{i = 1}^{n} x_{i} - \frac{1}{n} \left(\sum_{i = 1}^{n}x_{i}\right)^{2} \right\rbrack$$
standard deviation $$\sigma \equiv \sqrt{\sigma^{2}}$$
sample average $$\bar{x} = \sum_{i = 1}^{m} x_{i} f \left( x_{i} \right)$$
sample variance $$\sigma^{2} = \frac{n}{n-1} \sum_{i = 1}^{m} \left(x_{i} - \bar{x}\right)^{2}f\left( x_{i} \right)$$
sample variance (less rounding error) $$\sigma^{2} = \frac{1}{n-1} \left\lbrace \sum_{i = 1}^{m} \bar{x}^{2} n f\left( x_{i} \right) - \frac{1}{n} \left\lbrack \sum_{i = 1}^{m} x_{i} n f \left( x_{i} \right)\right\rbrack^{2} \right\rbrace$$

Measures of statistical dispersion

Mean Absolute Deviation Standard deviation Variance
Individual data $$MD = \frac{\underset{i = 1}{\overset{n}{\sum}}\vert x_{i} - \bar{x} \vert}{n}$$ $$\sigma = \sqrt{\frac{\underset{i = 1}{\overset{n}{\sum}}\left( x_{i} - \bar{x} \right)^{2}}{n}}$$ $$\sigma^{2} = \frac{\underset{i = 1}{\overset{n}{\sum}}\left( x_{i} - \bar{x} \right)^{2}}{n}$$
Frequency distribution $$MD = \frac{\underset{i = 1}{\overset{n}{\sum}} f_{i} \cdot \vert x_{i} - \bar{x} \vert}{n}$$ $$\sigma = \sqrt{\frac{\underset{i = 1}{\overset{n}{\sum}}\left( f_{i} \right)\left( x_{i} - \bar{x} \right)^{2}}{n}}$$ $$\sigma^{2} = \frac{\underset{i = 1}{\overset{n}{\sum}}\left( f_{i} \right)\left( x_{i} - \bar{x} \right)^{2}}{n}$$
Grouped data $$MD = \frac{\underset{i = 1}{\overset{n}{\sum}} f_{CM_{i}} \cdot \vert CM_{i} - \bar{x} \vert}{n}$$ $$\sigma = \sqrt{\frac{\underset{i = 1}{\overset{n}{\sum}}\left( f_{CM_{i}} \right)\left( CM_{i} - \bar{x} \right)^{2}}{n}}$$ $$\sigma^{2} = \frac{\underset{i = 1}{\overset{n}{\sum}}\left( f_{MC_{i}} \right)\left( MC_{i} - \bar{x} \right)^{2}}{n}$$

Quantiles

Quartiles Deciles Percentiles
Position $$q_{i} = \left( n + 1 \right) \frac{i}{4},\ i = \left[ 0,4 \right]$$ $$d_{i} = \left( n + 1 \right) \frac{i}{10},\ i = \left[ 0,10 \right]$$ $$p_{i} = \left( n + 1 \right) \frac{i}{100},\ i = \left[ 0,100 \right]$$
Value $$Q_{i} = x_{\left\lfloor q_{i} \right\rfloor} + \left( q_{i} - \left\lfloor q_{i} \right\rfloor \right) \left( x_{\left\lfloor q_{i} \right\rfloor + 1} - x_{\left\lfloor q_{i} \right\rfloor} \right)$$ $$D_{i} = x_{\left\lfloor d_{i} \right\rfloor} + \left( d_{i} - \left\lfloor d_{i} \right\rfloor \right) \left( x_{\left\lfloor d_{i} \right\rfloor + 1} - x_{\left\lfloor d_{i} \right\rfloor} \right)$$ $$P_{i} = x_{\left\lfloor p_{i} \right\rfloor} + \left( p_{i} - \left\lfloor p_{i} \right\rfloor \right) \left( x_{\left\lfloor p_{i} \right\rfloor + 1} - x_{\left\lfloor p_{i} \right\rfloor} \right)$$
Range $$IQR = Q_{3} - Q_{1}$$ $$IDR = D_{9} - D_{1},\ \mathrm{(most\ common)}$$ $$IDR = D_{b} - D_{a}$$ $$IPR = P_{90} - P_{10},\ \mathrm{(most\ common)}$$ $$IPR = P_{b} - P_{a}$$

Histogram

Number of bins and width

name equation notes
$$ k = \left\lceil \frac{\max x - \min x}{h} \right\rceil $$ $$k = \mathrm{number},\ h = \mathrm{width}$$
Square-root choice $$k = \left\lceil \sqrt{n} \right\rceil$$
Sturges' formula $$k = \left\lceil \log_{2} n \right\rceil + 1 = \left\lceil \frac{\log_{10} n}{\log_{10} 2} \right\rceil + 1$$ Derived from a binomial distribution and implicitly assumes an approximately normal distribution.
Rice rule $$k = \left\lceil 2\sqrt[3]{n} \right\rceil$$ Alternative to Sturges' rule.
Doane's formula $$k = 1 + \log_{2}\left( 2 \right) + \log_{2}\left( 1 + \frac{\vert g_{1} \vert}{\sigma_{g_{1}}} \right)$$ $$\sigma_{g_{1}} = \sqrt{\frac{6\left( n - 2 \right)}{\left( n + 1 \right)\left( n + 3 \right)}}$$ Modification of Sturges' formula which attempts to improve its performance with non-normal data. \(g_{1}\) is the estimated 3rd-moment-skewness of the distribution
Scott's normal reference rule $$h = \frac{3.5 \hat{\sigma}}{\sqrt[3]{n}}$$ Where \({\hat {\sigma }}\) is the sample standard deviation.
Freedman-Diaconis' choice $$h = 2\frac{\mathrm{IQR}\left( x \right)}{\sqrt[3]{n}}$$ Replaces \(3.5 \sigma \) of Scott's rule with \(2\ \mathrm{IQR}\), which is less sensitive than the standard deviation to outliers in data.

Probability

name equation
probability of an event $$P\left( E \right) = \lim_{n \to \infty} f\left( E \right) = \lim_{n \to \infty} \frac{n_{E}}{n}$$
union of probabilities $$P\left(A \cup B\right) = \begin{cases} P\left(A\right) + P\left(B\right) - P\left(A \cap B\right) & P\left(A \cap B\right) \neq \empty \\ P\left(A\right) + P\left(B\right) & P\left(A \cap B\right) = \empty\end{cases}$$
complement probability $$P\left( E^{\complement} \right) = 1 - P\left( E \right)$$ $$P\left( \neg E \right) = 1 - P\left( E \right)$$
intersection of disjoint events $$P\left( A \cap B \right) = 0$$
intersection of independent events $$P\left( A \cap B \right) = P\left( A \right)P\left( B \right)$$
intersection of dependent events $$\begin{split}P\left( A \cap B \right) &= P\left( B \vert A \right) P\left( A\right)\\ &= P\left( A \vert B \right) P\left( B\right)\end{split}$$ $$\begin{split}P\left( A \cap B^{\complement} \right) &= P\left( B^{\complement} \vert A \right) P\left( A \right)\\ &= P\left( A \vert B^{\complement} \right) P\left( B^{\complement} \right)\end{split}$$ $$\begin{split}P\left( A^{\complement} \cap B \right) &= P\left( B \vert A^{\complement} \right) P\left( A^{\complement} \right)\\ &= P\left( A^{\complement} \vert B \right) P\left( B\right)\end{split}$$ $$\begin{split}P\left( A^{\complement} \cap B^{\complement} \right) &= P\left( B^{\complement} \vert A^{\complement} \right) P\left( A^{\complement} \right)\\ &= P\left( A^{\complement} \vert B^{\complement} \right) P\left( B^{\complement} \right)\end{split}$$
complement of dependent events $$P\left( B \vert A \right) = 1 - P\left( B^{\complement} \vert A \right)$$ $$P\left( B \vert A^{\complement} \right) = 1 - P\left( B^{\complement} \vert A^{\complement} \right)$$

Permutations and Combinations

Remember, while permutations are ordered, combinations are not.

name equation
permutations of \(n\) different things $$n! = 1 \cdot 2 \cdot 3 \cdots n$$
permutations of \\(n\\) total elements (there may be identical elements), \\(r\\) is the number of different elements and \\(n_i\\) are the case repetition of each \\(r\\). $$\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$$
permutations of \(n\) different elements arranged in a circular manner $$\left(n - 1\right) !$$
permutations of a set of \( n \) different elements taking one subset of \( k \) chosen elements without repetition $$\frac{n!}{\left( n-k\right)!}$$
permutations of a set of \( n \) different elements taking one subset of \( k \) chosen elements with repetition $$n^{k}$$
combinations of a set of \( n \) different elements taking one subset of \( k \) chosen elements without repetition $${n \choose k} = \frac{n!}{k!\left( n-k\right)!}$$
combinations of a set of \( n \) different elements taking one subset of \( k \) chosen elements with repetition $${n + k - 1 \choose k} = \frac{\left( n + k - 1\right)!}{k!\left( n - 1\right)!} $$

Bayesian probability

name equation
conditional probability of \(A\) given \(B\) $$P\left( A \vert B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)}$$
Bayes' theorem (special case) $$\begin{split}P\left( A \vert B \right) &= \frac{P\left( B \vert A\right) P\left(A\right)}{P\left( B \right)} \\ &= \frac{P\left( B \vert A \right)P\left( A \right)}{P\left( B \vert A \right)P\left( A \right) + P(B \vert A^{\complement}) P\left( A^{\complement} \right)}\end{split}$$
Bayes' theorem (general) $$P\left( A_{k} \vert B \right) = \frac{P\left( B \vert A_{k} \right)P\left( A_{k} \right)}{\sum_{j}P\left( B \vert A_{j} \right)P\left(A_{j} \right)}$$

Probability distributions

name equation
probability function (for discrete variables) $$f\left( x \right) = P\left( x = x \right)$$
probability density (for continuous variables) $$f\left( x \right) = \frac{d F\left( x \right)}{dx}$$
k-th raw moment (discrete) $$E\left( x^{k} \right) = \sum_{i}x_{i}^{k}f\left( x_{i} \right)$$
k-th raw moment (continuous) $$E\left( x^{k} \right) = \int_{-\infty}^{\infty} x^{k} f\left( x \right)dx$$
k-th central moment (discrete) $$\mu_{k} = E\left( x - \mu \right)^{k} = \sum_{i} \left(x_{i} - \mu \right)^{k}f\left( x_{i} \right)$$
k-th central moment (continuous) $$\mu_{k} = E\left( x - \mu \right)^{k} = \int_{-\infty}^{\infty} \left( x - \mu \right)^{k} f\left( x \right)dx$$
Fisher's moment coefficient of skewness $$\gamma_{1} = \frac{\mu_{3}}{\sigma^{3}}$$
Moment-generating function (discrete) $$G\left( t \right) = E\left( e^{tx} \right) = \sum_{i} e^{t x_{i}}f\left( x_{i} \right)$$
Moment-generating function (continuous) $$G\left( t \right) = E\left( e^{tx} \right) = \int_{-\infty}^{\infty} e^{t x}f\left( x \right) dx$$

See also

Bayes Theorem

Box Whisker Diagram

Probability distributions