logo

johzu

About

Optics formulas


Remember that: \( \vec{a} = \mathbf{a} \), \(\dot{a}= \frac{da}{dt}\) and \(\Delta a = a_{final} - a_{initial} = a_{f} - a_{i} = a_{2} - a_{1} \). The \(\propto\) symbol is read as "is proportional to". While \(\hat{a} = \frac{\vec{a}}{\Vert \vec{a} \Vert}\) is the unit vector.

Symbols

name symbol
amplitude $$A$$
slit width $$a$$
light velocity $$c = 299\ 792\ 458\ \mathrm{m/s}$$
distance $$d$$
energy $$E$$
focal length, frequency $$f$$
Planck constant $$\begin{split} h &= 6.626 \times 10^{-34}\ \mathrm{J \cdot s} \\ &= 4.136 \times 10^{-15}\ \mathrm{eV \cdot s} \end{split}$$
intensity $$I$$
distance from diffraction slits to screen $$L$$
angular magnification (or amplification) $$M$$
lateral magnification, diffraction number of order $$m$$
near point approximation $$NP$$
refractive index $$n$$
optical power $$P$$
curvature radius (spherical mirror) $$r$$
object distance $$s$$
image distance $$s^{\prime}$$
speed of light in a medium $$v$$
object height $$y$$
image height $$y^{\prime}$$
phase difference $$\delta$$
wavelength $$\lambda$$
subtended angle $$\theta$$
phase difference of several waves $$\phi$$

Geometrical optics

name equation
refractive index $$n = \frac{c}{v}$$
reflection law $$\theta_{i} = \theta_{r}$$
Snell's law of refraction $$n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$$ $$\frac{\sin \theta_{1}}{v_{1}} = \frac{\sin \theta_{2}}{v_{2}}$$
reflected intensity $$I = \left( \frac{n_{1} - n_{2}}{n_{1} + n_{2}} \right)^{2} I_{0}$$
total internal reflection critical angle $$\sin \theta_{c} = \frac{n_{2}}{n_{1}}$$
Malus law $$I = I_{0} \cos^{2} \theta$$
Brewster angle, polarization angle $$\tg \theta_{p} = \frac{n_{2}}{n_{1}}$$
Flat mirror.

Spherical mirror

name equation
mirror equation $$\frac{1}{f} = \frac{1}{s} + \frac{1}{s^{\prime}}$$
focal length of a mirror $$f = \frac{1}{2}r$$
lateral magnification $$m = \frac{y^{\prime}}{y} = - \frac{s^{\prime}}{s}$$
lateral magnification using curvature radius $$\frac{y^{\prime}}{y} = - \frac{r/2}{s - \left( r/2 \right)}$$
Spherical mirror.

Lenses

name equation
refraction on a single surface $$\frac{n_{1}}{s} + \frac{n_{2}}{s^{\prime}} = \frac{n_{2} - n_{1}}{r}$$
magnification due to a refracting surface $$m = \frac{y^{\prime}}{y} = - \frac{n_{1} s^{\prime}}{n_{2}s}$$
lens maker equation $$\frac{1}{f} = \left( n - 1 \right) \left( \frac{1}{r_{1}} - \frac{1}{r_{2}} \right)$$
thin lens equation $$\frac{1}{f} = \frac{1}{s} + \frac{1}{s^{\prime}}$$
optical power $$P = \frac{1}{f}$$
effective focal length of two lenses $$\frac{1}{f_{ef}} = \frac{1}{f_{1}} + \frac{1}{f_{2}}$$
optical power of two lenses $$P_{ef} = P_{1} + P_{2}$$
subtended angle for the eye $$\theta = \frac{y}{s}$$
subtended angle for near point $$\theta = \frac{y}{NP}$$
subtended angle with lens $$\theta = \frac{y}{f}$$
lens angular magnification (or amplification) $$M = \frac{\theta}{\theta_{o}} = \frac{NP}{f}$$
microscope objective lens lateral magnification $$m_{o} = \frac{y^{\prime}}{y} = - \frac{L}{f_{o}}$$
ocular lens angular magnification $$M_{e} = \frac{x_{pp}}{f_{e}}$$
microscope angular magnification $$M = m_{o}M_{e} = - \frac{L}{f_{o}}\frac{x_{pp}}{f_{e}}$$
telescope angular magnification $$M = \frac{\theta_{e}}{\theta_{o}} = - \frac{f_{o}}{f_{e}}$$
Convex Lens.
Concave Lens.
Microscope diagram.
Telescope diagram.

Physical optics

Two slit interference

name equation
phase difference due to the difference in the optical path traveled $$\delta = \frac{\Delta r}{\lambda} 2\pi = \frac{\Delta r}{\lambda} 360\ ^{\circ}\mathrm{C}$$
two-slit interference maxima $$d \sin \theta_{\max} = m\lambda,\quad m = 0,1,2, \ldots$$
two-slit interference minima $$d \sin \theta_{\min} = \left( m - \frac{1}{2} \right)\lambda,\quad m = 1,2,3, \ldots$$
two-slit phase difference $$\frac{\delta}{2 \pi}= \frac{d \sin \theta}{\lambda}$$
distance on the screen to the m-th bright fringe $$y_{m} = m \frac{\lambda L}{d}$$
intensity as a function of phase difference $$I = 4 I_{0} \cos^{2} \frac{1}{2} \delta$$
Two slit diagram.

One slit diffraction

name equation
intensity null values $$a\sin \theta = m \lambda, \qquad m = 1,2,3, \ldots$$
zero intensity minima $$\tg \theta_{1} = \frac{y_{1}}{L}$$
diffraction intensity of a slit $$I = I_{0} \left( \frac{\sin \frac{1}{2} \phi}{\frac{1}{2} \phi} \right)^{2}$$
Single slit diagram.

Quantum optics

name equation
equation for photon energy $$E = hf = \frac{hc}{\lambda}$$
hc product $$hc = 1240\ \mathrm{eV \cdot nm}$$
photon energy $$\vert \Delta E \vert = hf$$
emitted wavelength $$\lambda = \frac{c}{f} = \frac{hc}{\vert \Delta E \vert}$$