logo

johzu

About

Kinematics


Remember that: \( \vec{a} = \mathbf{a} \), \(\dot{a}= \frac{da}{dt}\) and \(\Delta a = a_{final} - a_{initial} = a_{f} - a_{i} = a_{2} - a_{1} \). The \(\propto\) symbol is read as "is proportional to".

Symbols

name symbol
acceleration $$a$$
distance $$d$$
frequency $$f$$
gravitational acceleration $$g = 9.81\ \mathrm{m/s}^{2}$$
height $$h$$
range $$R$$
displacement $$r$$
distance $$s$$
period/time of flight $$T$$
time $$t$$
velocity $$v$$
initial horizontal coordinate $$x$$
initial vertical coordinate $$y$$
angular acceleration $$\alpha$$
ratio of a circle's circumference to its diameter $$\pi = 3.14159$$
launch angle, angular displacement $$\theta$$
angular displacement $$\phi$$
angular velocity $$\omega$$

Uniform linear motion

name equation
average velocity $$\mathbf{\bar{v}}=\frac{\Delta \vec{r}}{\Delta t}$$
instantaneous velocity $$\vec{v}=\underset{\Delta t \to 0}\lim \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \mathbf{\dot{r}}$$
speed $$v = \vert \vec{v} \vert = \frac{ds}{dt}$$

Uniformly accelerated linear motion

name equation
average acceleration $$\mathbf{\bar{a}}=\frac{\Delta \vec{v}}{\Delta t} = \frac{v_{f} - v_{i}}{t}$$
instantaneous acceleration $$\vec{a}=\underset{\Delta t \to 0}\lim \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \mathbf{\dot{v}} = \mathbf{\ddot{r}}$$
position when final velocity is unknown $$\Delta \vec{r} = \vec{v}_{i}t + \frac{\vec{a}t^{2}}{2}$$
position from velocity and time $$\Delta \vec{r} = \frac{\left( \vec{v}_{f} + \vec{v}_{i}\right) t}{2}$$
position from acceleration and velocity $$r = \frac{v_{f}^{2} - v_{i}^{2}}{2a}$$

Free fall

In this case \( a = g = 9.81\ \mathrm{m/s^{2}} \)

name equation
height for time \(t\) $$h = \frac{1}{2}gt^{2}$$
time taken from height \(h\) $$t = \sqrt{\frac{2h}{g}}$$
instantaneous velocity for time \(t\) $$v = gt$$
instantaneous velocity for height \(h\) $$v = \sqrt{2gh}$$
average velocity for time \(t\) $$\bar{v} = \frac{1}{2} gt$$
average velocity for height \(h\) $$v = \frac{\sqrt{2gh}}{2}$$

Upward motion

In this case \( a = g = 9.81\ \mathrm{m/s^{2}} \)

name equation
final velocity for time \(t\) $$v_{f} = v_{i} - gt$$
final velocity for height \(h\) $$v_{f}^{2} = v_{i}^{2} - 2gh$$
distance when final velocity is unknown $$h = v_{i}t - \frac{gt^{2}}{2}$$
maximum height $$h_{\max} = \frac{v_{i}^{2}}{2g}$$
time for maximum height $$t_{h_{\max}} = \frac{v_{i}}{g}$$
time of flight $$T = \frac{2 v_{i}}{g}$$

Projectile motion

In this case \( a = g = 9.81\ \mathrm{m/s^{2}} \). If you want to check the derivations of the projectile motion equations for maximum height, range, and flight time, you can refer to the following link.

name equation
horizontal component of speed at \(t = 0\) $$ v_{0_{x}} = v_{0} \cos\left( \theta \right) $$
vertical component of speed at \(t = 0\) $$ v_{0_{y}} = v_{0} \sin\left( \theta \right) $$
horizontal component of acceleration $$ a_{x} = 0 $$
vertical component of acceleration $$ a_{y} = -g $$
horizontal component of speed at any time $$ v_{x} = v_{0} \cos\left( \theta \right) $$
vertical component of speed at any time $$ v_{y} = v_{0} \sin\left( \theta \right) - gt $$
velocity magnitude $$v = \sqrt{v_{x}^{2} + v_{y}^{2}}$$
horizontal displacement $$x = v_{0} t \cos\left( \theta \right)$$
vertical displacement $$y = v_{0} t \sin\left( \theta \right) - \frac{1}{2}gt^{2}$$
displacement magnitude $$\Delta r = \sqrt{x^{2} + y^{2}}$$
range if \( y_{0} = 0 \) $$d = \frac{v^{2} \sin 2\theta}{g} $$
range \(d\) for initial height \(y_{0}\) $$d = \frac{v \cos \theta}{g} \left( v \sin \theta + \sqrt{v^{2} \sin^{2} \theta + 2gy_{0}} \right)$$
initial velocity $$ v_{0} = \sqrt{\frac{x^{2}g}{x \sin 2\theta - 2y \cos^{2}\theta}} $$
time of flight $$ T = \frac{2v_{0} \sin \left( \theta \right)}{\vert g \vert}$$
time of flight for height \(y_{0}\) $$ T = \frac{d}{v \cos \theta} = \frac{v \sin \theta + \sqrt{\left( v \sin \theta \right)^{2} + 2gy_{0}}}{g} $$
time of flight to the target position $$ T = \frac{x}{v_{0} \cos \left( \theta \right)} $$
time to reach maximum height $$ t_{h_{\max}} = \frac{v_{0} \sin \left( \theta \right)}{\vert g \vert} $$
maximum height $$ h_{\max} = \frac{v_{0}^{2} \sin^{2} \left( \theta \right)}{2 \vert g \vert} $$
maximum height for known \(\left(x,y\right)\) position and angle \(\left( \theta \right)\) $$ h_{\max} = \frac{\left( x \tan \theta \right)^{2}}{4 \left( x \tan \theta - y \right)} $$
relation between \(d\) and \(h_{\max}\) $$h_{\max} = \frac{d \tan \theta}{4}$$
maximum distance \( \left( \theta = 45^{\circ}\mathrm{C} \right) \) $$ d_{\max} = \frac{v^{2}}{\vert g \vert} $$
angle of reach for shallow trajectory $$\theta = \frac{1}{2} \arcsin \left( \frac{gd}{v^{2}} \right)$$
angle of reach for steep trajectory $$\theta = \frac{1}{2} \arccos \left( \frac{gd}{v^{2}} \right)$$
angle required to hit a coordinate \( \left( x, y \right) \) $$ \theta = \arctan \left( \frac{v^{2} \pm \sqrt{v^{4} - g\left( gx^{2} + 2yv^{2} \right)}}{gx} \right) $$
total path length of the trajectory $$L = \frac{v_{0}^{2}}{g} \left( \sin \theta + \cos^{2} \theta \cdot \tanh^{-1} \left( \sin \theta \right) \right)$$

Uniform circular motion

name equation
period $$T = \frac{2\pi}{\omega}$$
frequency $$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
angular velocity $$ \omega = \frac{2 \pi}{T} = 2 \pi f = \frac{d\phi}{dt} $$
tangential velocity $$v_{t} = \frac{2 \pi}{T}r = \omega r$$
angle \( \phi \) swept out in a time \(t\) $$\phi = \frac{2\pi}{T} t = \omega t$$

Uniformly accelerated circular motion

name equation
angular acceleration $$ \alpha = \frac{\omega_{f} - \omega_{i}}{t} $$
angle when the final angular velocity is unknown $$\phi = \omega_{i}t + \frac{\alpha t^{2}}{2}$$
angle from angular velocity and time $$\phi = \frac{\left(\omega_{f} + \omega_{i}\right) t}{2}$$
angle from angular acceleration and angular velocity $$\phi = \frac{\omega_{f}^{2} - \omega_{i}^{2}}{2\alpha} $$
tangential acceleration $$a_{t} = \alpha r$$

See also

Conic sections

Parabolic movement derivations