ley de Coulomb
|
$$F = k \frac{q_{1}q_{2}}{r^{2}}$$ $$F = \frac{1}{4\pi
\epsilon_{0}} \frac{q_{1}q_{2}}{r^{2}}$$ $$\vec{F} =
\frac{1}{4\pi \epsilon_{0}} \frac{q_{1}q_{2}}{\left(\vec{r} -
\vec{r}^{\prime}\right)^{2}} \hat{r}$$
|
electric field
|
$$\vec{E} = \vec{F}/q_{0}$$ $$E = \frac{1}{4\pi \epsilon_{0}}
\sum^{n}_{i=1} \frac{q_{i}}{r^{2}}$$ $$\vec{E} \left( \vec{r}
\right) = \frac{1}{4\pi \epsilon_{0}} \sum^{n}_{i=1}
\frac{q_{i}}{\left(\vec{r} - \vec{r}^{\prime}_{i}\right)^{2}}
\hat{r}$$
|
electric field over a region
|
$$\vec{E} \left( \vec{r} \right) = \frac{1}{4\pi \epsilon_{0}}
\int \frac{dq}{\left(\vec{r} -
\vec{r}^{\prime}_{i}\right)^{2}} \hat{r}$$
|
electric field of a line charge
|
$$\vec{E} \left( \vec{r} \right) = \frac{1}{4\pi \epsilon_{0}}
\int_{\mathcal{L}} \frac{\lambda \left( \vec{r}^{\prime}
\right) dl}{\left(\vec{r} - \vec{r}^{\prime}_{i}\right)^{2}}
\hat{r}$$
|
electric field over the axis of a finite linear charge from a
reference point \(x_{P}\)
|
$$E_{x} = \frac{kq}{x_{P}^{2} - \left( \frac{1}{2} L
\right)^{2}},\quad x_{p} > \frac{1}{2} L$$
|
\(E_{y}\) component due to a segment with uniform linear
charge density
|
$$\begin{split} E_{y} &= \frac{k \lambda}{y}\left( \sin
\theta_{2} - \sin \theta_{1} \right) \\ &= \frac{k q}{L
y}\left( \sin \theta_{2} - \sin \theta_{1} \right)
\end{split}$$
|
\(E_{x}\) component due to a segment with uniform linear
charge density
|
$$E_{y} = \frac{k \lambda}{y}\left( \cos \theta_{2} - \cos
\theta_{1} \right)$$
|
electric field \(\vec{E}\) at a distance R from an infinite
linear charge
|
$$E_{R} = 2k \frac{\lambda}{R}$$ |
electric field for a surface charge
|
$$\vec{E} \left( \vec{r} \right) = \frac{1}{4\pi \epsilon_{0}}
\int_{\mathcal{A}} \frac{\sigma \left( \vec{r}^{\prime}
\right) ds}{\left(\vec{r} - \vec{r}^{\prime}_{i}\right)^{2}}
\hat{r}$$
|
electric field for a volume charge
|
$$\vec{E} \left( \vec{r} \right) = \frac{1}{4\pi \epsilon_{0}}
\int_{\mathcal{V}} \frac{\rho \left( \vec{r}^{\prime} \right)
dv}{\left(\vec{r} - \vec{r}^{\prime}_{i}\right)^{2}} \hat{r}$$
|
electric dipole moment
|
$$\vec{p} = q \vec{L}$$ |
dipole torque
|
$$\vec{\tau} = \vec{p} \times \vec{E}$$ |
dipole potential energy
|
$$U = -\vec{p} \cdot \vec{E}$$ |
electric field flux through a surface \(\mathcal{S}\)
|
$$\Phi_{E} \equiv \int_{\mathcal{S}}\vec{E} \cdot d\vec{s}$$
|