Geometry formulas
Symbols
name | symbol |
---|---|
area | $$A$$ |
lateral area | $$A_{L}$$ |
right section area | $$A_{R}$$ |
total area | $$A_{T}$$ |
apothem, catheti, height, side | $$a$$ |
base area | $$B$$ |
base perimeter | $$B_{P}$$ |
base, catheti, side | $$b$$ |
circunference | $$C$$ |
chord length, hypotenuse, side | $$c$$ |
diagonal, diameter | $$D$$ |
diagonal, side | $$d$$ |
edge | $$E$$ |
lateral edge | $$E_{L}$$ |
face | $$F$$ |
generatrix | $$g$$ |
height, segment height | $$h$$ |
arc length | $$L$$ |
line | $$l$$ |
perimeter | $$P$$ |
radius | $$r$$ |
semiperimeter | $$S$$ |
sides | $$s$$ |
vertex, volume | $$V$$ |
angle, inclination angle | $$\theta$$ |
Polygons
name | notation | perimeter | area |
---|---|---|---|
Triangle | $$a,b,c:\ \mathsf{sides}\\b:\ \mathsf{base}\\h:\ \mathsf{height}\\S:\ \mathsf{semiperimeter}\\P:\ \mathsf{perimeter}$$ | $$P = a + b + c\\S=\frac{a + b + c}{2}$$ | $$A = \frac{bh}{2}\\A = \sqrt{S \left(S - a\right)\left(S - b\right)\left(S - c\right)}$$ |
Equilateral triangle | $$a:\ \mathsf{side}$$ | $$P = 3a$$ | $$A = \frac{\sqrt{3}}{4}a^{2}$$ |
Right triangle | $$a,b:\ \mathsf{legs, cathetus}\\c:\ \mathsf{hypotenuse}$$ | $$P = a + b + c$$ | $$A = \frac{ab}{2}$$ |
Square | $$a:\ \mathsf{side}$$ | $$P = 4a$$ | $$A = a^{2}$$ |
Rectangle | $$b:\ \mathsf{base}\\h:\ \mathsf{height}$$ | $$P = 2\left(b + h\right)$$ | $$A = bh$$ |
Rhombus | $$a:\ \mathsf{side}\\D:\ \mathsf{long\ diagonal}\\d:\ \mathsf{short\ diagonal}$$ | $$P = 4a$$ | $$A = \frac{Dd}{2}$$ |
Rhomboid | $$a:\ \mathsf{side}\\b:\ \mathsf{base, side}\\h:\ \mathsf{height}$$ | $$P = 2\left(a + b\right)$$ | $$A = bh$$ |
Trapezoid | $$a,b,c,d:\ \mathsf{sides}\\l:\ \mathsf{sides}\\h:\ \mathsf{sides\ number}$$ | $$P = a+b+c+d$$ | $$A = \left(\frac{a+c}{2}\right)h$$ |
Convex quadrilateral | $$a:\ \mathsf{apothem}\\d_{1},d_{2}:\ \mathsf{diagonals}$$ | $$P = a+b+c+d$$ | $$A = \frac{1}{4}\sqrt{4\left( d_{1}d_{2} \right)\left( a^{2} - b^{2} + c^{2} - d^{2} \right)}$$ |
Regular polygons | $$a:\ \mathsf{apothem}\\n:\ \mathsf{number\ of\ sides}\\s:\ \mathsf{side}$$ | $$P = ns$$ | $$A = \frac{Pa}{2}$$ |
Circle | $$D:\ \mathsf{diameter}\\r:\ \mathsf{radius}\\ \pi:\ \mathsf{3.1416}$$ | $$P = \pi D \\ P = 2 \pi r$$ | $$A = \frac{\pi D^{2}}{4} \\ A = \pi r^{2}$$ |
Annulus | $$D:\ \mathsf{outer\ diameter}\\d:\ \mathsf{inner\ diameter}\\R:\ \mathsf{outer\ radius}\\r:\ \mathsf{inner\ radius}\\ \pi:\ \mathsf{3.1416}$$ | $$P_{o} = \pi D = 2\pi R \\ P_{i} = \pi d = 2\pi r \\ P_{t} = \pi \left( D + d \right) \\ \\ P_{t} = 2\pi \left( R + r \right)$$ | $$A = \frac{\pi}{4}\left(D^{2} - d^{2}\right) \\ A = \pi \left(R^{2} - r^{2}\right)$$ |
Circular sector | $$L:\ \mathsf{arc\ length}\\r:\ \mathsf{radius}\\ \theta:\ \mathsf{angle}\\ \pi:\ \mathsf{3.1416}$$ | $$L = r \theta \\ P = L + 2r$$ | $$A = \frac{r^{2}\theta}{2} = \frac{\theta\pi r^{2}}{360^{\circ}} $$ |
Circular segment | $$c:\ \mathsf{chord\ length}\\ h:\ \mathsf{segment\ height}\\ r:\ \mathsf{radius}\\ \pi:\ \mathsf{3.1416}\\ \theta:\ \mathsf{angle}$$ | $$P = r \theta + c$$ | $$A = \frac{ r^{2}\theta}{2} - \frac{c \left( r - h \right)}{2} \\ A = \frac{ \pi r^{2}\theta}{360^{\circ}} - \frac{c \left( r - h \right)}{2} $$ |
Ellipse | $$a:\ \mathsf{semi-major\ axis}\\ b:\ \mathsf{semi-minor\ axis}$$ | $$P = \pi \left( a + b \right)$$ | $$A = \pi ab $$ |
Polyhedra
Regular polyhedra
Euler's theorem for regular polyhedra: \( C + V = A + 2 \).
name | notation | perimeter | area | volume |
---|---|---|---|---|
Tetrahedron | $$E:\ \mathsf{edge}$$ | $$P = 6E$$ | $$A = 4\sqrt{3}E$$ | $$V = \frac{\sqrt{2}}{12}E$$ |
Cube | $$E:\ \mathsf{edge}$$ | $$P = 12E$$ | $$A = 6E^{2}$$ | $$V = A^{3}$$ |
Octahedron | $$E:\ \mathsf{edge}$$ | $$P = 12E$$ | $$A = 2\sqrt{3}E^{2}$$ | $$V = \frac{\sqrt{2}}{3}E^{3}$$ |
Dodecahedron | $$E:\ \mathsf{edge}$$ | $$P = 30E$$ | $$A = 15 \sqrt{\frac{5 + 2 \sqrt{5}}{5}} E^{2}$$ | $$V = \frac{15 + 7 \sqrt{5}}{4}E^{3}$$ |
Icosahedron | $$E:\ \mathsf{edge}$$ | $$P = 30E$$ | $$A = 5\sqrt{3}E^{2}$$ | $$V = \frac{5}{6} \sqrt{\frac{7 + 3\sqrt{5}}{2}}E^{2}$$ |
Irregular polyhedra
name | notation | perimeter | area | volume |
---|---|---|---|---|
Oblique prism | $$A_{L}:\ \mathsf{lateral\ area}\\A_{R}:\ \mathsf{right\ section\ area}\\A_{T}:\ \mathsf{total\ area}\\B:\ \mathsf{base\ area}\\B_{P}:\ \mathsf{base\ perimeter}\\E_{L}:\ \mathsf{lateral\ edge}\\h:\ \mathsf{height}\\P_{R}:\ \mathsf{right\ section\ perimeter}\\ \theta:\ \mathsf{inclination\ angle}$$ | $$P = 2B_{P} + E_{L}(F - 2)\\P = 2B_{P} + \frac{h}{\sin\theta}(F - 2)$$ | $$A_{L} = P_{R}E_{L}\\A_{T} = A_{L} + 2B\\A_{T} = P_{R}E_{L} + 2B$$ | $$V = Bh$$ |
Right prism | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\B:\ \mathsf{base\ area}\\B_{P}:\ \mathsf{base\ perimeter}\\h:\ \mathsf{height}$$ | $$P = 2B_{P} + h(F - 2)$$ | $$A_{L} = B_{P}h\\A_{T} = A_{L} + 2B\\A_{T} = B_{P}h + 2B$$ | $$V = Bh$$ |
Parallelepiped | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\a:\ \mathsf{length}\\b:\ \mathsf{width}\\c:\ \mathsf{height}$$ | $$P = 4 \left( a + b+ c \right)$$ | $$A_{L} = 2 \left( a + b \right) c\\A_{T} = 2 \left( a + b \right) c + 2ab$$ | $$V = abc$$ |
Pyramid | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\a:\ \mathsf{apothem}\\B:\ \mathsf{base\ area}\\B_{P}:\ \mathsf{base\ perimeter}\\h:\ \mathsf{height}$$ | $$$$ | $$A_{L} = \frac{1}{2}B_{P}a\\A_{T} = \frac{1}{2}B_{P}a + B$$ | $$V = \frac{1}{3}Bh$$ |
Truncated pyramid | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\a:\ \mathsf{apothem}\\B:\ \mathsf{base\ area\ (bottom)}\\B^{\prime}:\ \mathsf{base\ area (top)}\\B_{P}:\ \mathsf{base\ perimeter (bottom)}\\B^{\prime}_{P}:\ \mathsf{base\ perimeter (top)}\\h:\ \mathsf{height}$$ | $$$$ | $$A_{L} = \left( \frac{B_{P} + B_{P}^{\prime}}{2} \right) a \\A_{T} = \left( \frac{B_{P} + B_{P}^{\prime}}{2} \right) a + B + B^{\prime}$$ | $$V = h\left( B + B^{\prime} + \sqrt{BB^{\prime}} \right)$$ |
Oblique cylinder | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\B:\ \mathsf{base\ area}\\g:\ \mathsf{generatrix}\\h:\ \mathsf{height}\\P_{R}:\ \mathsf{right\ section\ perimeter}$$ | $$$$ | $$A_{L} = P_{R} g \\A_{T} = P_{R} g + 2B$$ | $$V = Bh$$ |
Right Cylinder | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\h:\ \mathsf{height}\\r:\ \mathsf{base\ radius}$$ | $$$$ | $$A_{L} = 2 \pi rh \\A_{T} = 2 \pi rh + 2 \pi r^{2}$$ | $$V = \pi r^{2} h$$ |
Cone | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\g:\ \mathsf{generatrix}\\h:\ \mathsf{height}\\r:\ \mathsf{base\ radius}$$ | $$$$ | $$A_{L} = 2 \pi rg \\A_{T} = 2 \pi rg + 2 \pi r^{2}$$ | $$V = \frac{1}{3}\pi r^{2} h$$ |
Cone | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\g:\ \mathsf{generatrix}\\h:\ \mathsf{height}\\r:\ \mathsf{base\ radius(bottom)}\\r:\ \mathsf{base\ radius(top)}$$ | $$$$ | $$A_{L} = 2 \pi g \left(r + r^{\prime}\right) \\A_{T} = 2 \pi g \left(r + r^{\prime}\right) + \pi \left(r^{2} + r^{\prime 2}\right)$$ | $$V = \frac{1}{3}\pi h\left( r^{2} + r^{\prime 2} + rr^{\prime} \right)$$ |
Sphere | $$A:\ \mathsf{area}\\r:\ \mathsf{sphere\ radius}$$ | $$$$ | $$A = 4 \pi r^{2}$$ | $$V = \frac{4}{3}\pi r^{3}$$ |
Spherical cap | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\h:\ \mathsf{height}\\R:\ \mathsf{sphere\ radius}\\r:\ \mathsf{circle\ radius}$$ | $$$$ | $$A = 2 \pi Rh \\ A = \pi \left( r^{2} + h^{2} \right) \\ A_{T} = A + \pi r^{2}$$ | $$V = \frac{1}{3} \pi h^{2} \left( 3R - h \right) \\ V = \frac{1}{2} \pi h \left( r + \frac{h^{2}}{3} \right)$$ |
Spheric zone | $$A_{L}:\ \mathsf{lateral\ area}\\A_{T}:\ \mathsf{total\ area}\\h:\ \mathsf{height}\\R:\ \mathsf{sphere\ radius}\\r:\ \mathsf{lower\ base\ radius}\\r^{\prime}:\ \mathsf{upper\ base\ radius}$$ | $$$$ | $$A_{L} = 2 \pi Rh \\ A_{T} = 2 \pi Rh + \pi \left( r^{2} + r^{\prime 2} \right)$$ | $$V = \frac{1}{2} \pi h \left( r^{2} + r^{\prime 2} + \frac{h^{2}}{3} \right)$$ |
spherical lune, biangle | $$A:\ \mathsf{area}\\AB:\ \mathsf{maximum\ arc}\\R:\ \mathsf{sphere\ radius}$$ | $$$$ | $$A = 2R AB$$ | $$$$ |